Potential Effect of Low-Rise, Downcast Artificial Lights on Nocturnally Migrating Land Birds

Author:

Cabrera-Cruz Sergio A1ORCID,Larkin Ronald P2,Gimpel Maren E3ORCID,Gruber James G3,Zenzal Theodore J45ORCID,Buler Jeffrey J1ORCID

Affiliation:

1. Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA

2. Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, 615 E. Peabody Drive, MC-650, Champaign, IL 61820, USA

3. Foreman's Branch Bird Observatory, Washington College, 300 Washington Avenue, Chestertown, MD 21620, USA

4. U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Blvd., Lafayette, LA 70506, USA

5. School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39460, USA

Abstract

Abstract Artificial light at night (ALAN) on tall or upward-pointed lighting installations affects the flight behavior of night-migrating birds. We hypothesized that common low-rise lights pointing downward also affect the movement of nocturnal migrants. We predicted that birds in flight will react close to low-rise lights, and be attracted and grounded near light sources, with a stronger effect on juveniles during their autumn migration. We conducted a controlled longitudinal experiment with light-emitting diode floodlights and considered nearby structures that turn on lights at night. We analyzed 1501 high-resolution 3D nocturnal flight paths of free-flying migrants and diurnally captured 758–2009 birds around experimental lights during spring and autumn 2016, and spring 2017. We identified change points along flight paths where birds turned horizontally or vertically, and we considered these indicative of reactions. Flight paths with and without reactions were generally closer to our experimental site in spring than in autumn when the lights were on. Reactions were up to 40% more likely to occur in autumn than in spring depending on the threshold magnitude of turning angle. Reactions in spring were up to ∼60% more likely to occur at ∼35 m from the lights than at >1.5 km. In autumn, some vertical reactions were ∼40% more likely to occur at ∼50 m from the lights than at >2.2 km. Interactions between distance to lights and visibility or cloud cover were consistent with known effects of ALAN on nocturnal migrants. Under poor visibility, reactions were up to 50% more likely to occur farthest from structures in spring, but up to 60% more likely to occur closest to lights in autumn. Thus, the effects of ALAN on night-migrating land birds are not limited to bright lights pointing upward or lights on tall structures in urban areas. Diurnal capture rates of birds were not different when lights were on or off for either season. To our knowledge, this is the first study to show that low-rise lights pointing downward affect night-migrating birds. Although the interpreted reactions constitute subtle modifications in the linearity of flight paths, we discuss future work that could verify whether the protection of nocturnal migrants with lights-out programs would have greater impact if implemented beyond urban areas and include management of low-rise lights.

Funder

FULBRIGHT

CONACYT

University of Delaware

Mississippi-Alabama Sea Grant Consortium

National Oceanic and Atmospheric Administration

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3