Caudal Spine Morphology and Puncture Performance of Two Coastal Stingrays

Author:

Shea-Vantine Caitlin S1,Galloway Katherine A12ORCID,Ingle Danielle N13,Porter Marianne E1ORCID,Kajiura Stephen M1

Affiliation:

1. Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA

2. Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA

3. Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA

Abstract

Abstract A diagnostic characteristic of stingrays in the family Dasyatidae is the presence of a defensive, partially serrated spine located on the tail. We assessed the contribution of caudal spine morphology on puncture and withdrawal performance from two congeneric, co-occurring stingrays, the Atlantic stingray, Hypanus sabinus, and the bluntnose stingray, Hypanus say. Spines exhibited a high degree of morphological variability. Stingray spines were serrated along 50.8% (H. sabinus) or 62.3% (H. say) of their length. Hypanus say had a greater number of serrations along each side of the spine (30.4) compared with H. sabinus (20.7) but the pitch did not differ between species. We quantified spine puncture and withdrawal forces using porcine skin as a model for human skin. Puncture and withdrawal forces did not differ significantly between species, or within H. say, but withdrawal force was greater than puncture force for H. sabinus. We incorporated micro-computed tomography scanning to quantify tissue mineral density and found that for both species, the shaft of the spine was more heavily mineralized than the base, and midway (50%) along the length of the spine was more heavily mineralized than the tip. The mineralization variability along the spine shaft may create a stiff structure that can fracture once embedded within the target tissue and act as an effective predator deterrent.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3