The Development and Neuronal Complexity of Bipinnaria Larvae of the Sea Star Asterias rubens

Author:

Carter Hugh F12,Thompson Jeffrey R13,Elphick Maurice R4,Oliveri Paola13ORCID

Affiliation:

1. Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK

2. Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK

3. UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK

4. School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK

Abstract

Synopsis Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. Although transitory, these larvae often attain a remarkable degree of tissue complexity, with well-defined musculature and nervous systems. Among the best studied are larvae belonging to the phylum Echinodermata, but with work largely focused on the pluteus larvae of sea urchins (class Echinoidea). The greatest diversity of larval strategies among echinoderms is found in the class Asteroidea (sea stars), organisms that are rapidly emerging as experimental systems for genetic and developmental studies. However, the bipinnaria larvae of sea stars have only been studied in detail in a small number of species and although they have been relatively well described neuro-anatomically, they are poorly understood neurochemically. Here, we have analyzed embryonic development and bipinnaria larval anatomy in the common North Atlantic sea star Asterias rubens, using a variety of staining methods in combination with confocal microscopy. Importantly, the chemical complexity of the nervous system of bipinnaria larvae was revealed through use of a diverse set of antibodies, with identification of at least three centers of differing neurochemical signature within the previously described nervous system: the anterior apical organ, oral region, and ciliary bands. Furthermore, the anatomy of the musculature and sites of cell division in bipinnaria larvae was analyzed. Comparisons of developmental progression and molecular anatomy across the Echinodermata provided a basis for hypotheses on the shared evolutionary and developmental processes that have shaped this group of animals. We conclude that bipinnaria larvae appear to be remarkably conserved across ∼200 million years of evolutionary time and may represent a strong evolutionary and/or developmental constraint on species utilizing this larval strategy.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3