Linking Tooth Shape to Strike Mechanics in the Boa constrictor

Author:

Ryerson William G1ORCID,Van Valkenburg Tate1

Affiliation:

1. Department of Biology, Saint Anselm College, 100 Saint Anselm Drive, Manchester, NH 03102, USA

Abstract

Synopsis Snakes, with the obvious exception of the fangs, are considered to lack the regional specialization of tooth shape and function which are exemplified by mammals. Recent work in fishes has suggested that the definition of homodont and heterodont are incomplete without a full understanding of the morphology, mechanics, and behavior of feeding. We investigated this idea further by examining changes in tooth shape along the jaw of Boa constrictor and integrating these data with the strike kinematics of boas feeding on rodent prey. We analyzed the shape of every tooth in the skull, from a combination of anesthetized individuals and CT scanned museum specimens. For strike kinematics, we filmed eight adult boas striking at previously killed rats. We determined the regions of the jaws that made first contact with the prey, and extrapolated the relative positions of those teeth at that moment. We further determined the roles of all the teeth throughout the prey capture process, from the initiation of the strike until constriction began. We found that the teeth in the anterior third of the mandible are the most upright, and that teeth become progressively more curved posteriorly. Teeth on the maxilla are more curved than on the mandible, and the anterior teeth are more linear or recurved than the posterior teeth. In a majority of strikes, boas primarily made contact with the anterior third of the mandible first. The momentum from the strike caused the upper jaws and skull to rotate over the rat. The more curved teeth of the upper jaw slid over the rat unimpeded until the snake began to close its jaws. In the remaining strikes, boas made contact with the posterior third of both jaws simultaneously, driving through the prey and quickly retracting, ensnaring the prey on the curved posterior teeth of both jaws. The curved teeth of the palatine and pterygoid bones assist in the process of swallowing.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Reference61 articles.

1. geomorph: an R package for the collection and analysis of geometric morphometric shape data;Adams;Methods Ecol Evol,2013

2. Morphology, performance and fitness;Arnold;Am Zool,1983

3. Digital analysis of photographs for snake length measurement;Astley;Herpetol Rev,2017

4. A practical guide to sliding and surface semilandmarks in morphometric analyses;Bardua;Integr Organ Biol,2019

5. Correlated evolution of aquatic prey–capture strategies in European and American natricine snakes;Bilcke;Biol J Linn Soc,2006

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3