Affiliation:
1. Department of Biology, Emory University , Atlanta, GA , United States
Abstract
Abstract
The diversification of many lineages throughout natural history has frequently been associated with evolutionary changes in life cycle complexity. However, our understanding of the processes that facilitate differentiation in the morphologies and functions expressed by organisms throughout their life cycles is limited. Theory suggests that the expression of traits is decoupled across life stages, thus allowing for their evolutionary independence. Although trait decoupling between stages is well established, explanations of how said decoupling evolves have seldom been considered. Because the different phenotypes expressed by organisms throughout their life cycles are coded for by the same genome, trait decoupling must be mediated through divergence in gene expression between stages. Gene duplication has been identified as an important mechanism that enables divergence in gene function and expression between cells and tissues. Because stage transitions across life cycles require changes in tissue types and functions, we investigated the potential link between gene duplication and expression divergence between life stages. To explore this idea, we examined the temporal changes in gene expression across the monarch butterfly (Danaus plexippus) metamorphosis. We found that within homologous groups, more phylogenetically diverged genes exhibited more distinct temporal expression patterns. This relationship scaled such that more phylogenetically diverse homologous groups showed more diverse patterns of gene expression. Furthermore, we found that duplicate genes showed increased stage-specificity relative to singleton genes. Overall, our findings suggest an important link between gene duplication and the evolution of complex life cycles.
Funder
National Science Foundation
Publisher
Oxford University Press (OUP)
Reference51 articles.
1. A protocol to evaluate RNA sequencing normalization methods;Abrams;BMC Bioinformatics,2019
2. The genetic covariance between life cycle stages separated by metamorphosis;Aguirre;Proceedings Biological Sciences,2014
3. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs;Altschul;Nucleic Acids Research,1997
4. Gene expression across mammalian organ development;Cardoso-Moreira;Nature,2019
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献