Recurrent selection and reduction in recombination shape the genomic landscape of divergence across multiple population pairs of Green-backed Tit

Author:

Jiang Zhiyong12,Song Gang1,Luo Xu3,Zhang Dezhi1,Lei Fumin124,Qu Yanhua12

Affiliation:

1. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences , Beijing , China

2. College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China

3. Faculty of Biodiversity and Conservation, Southwest Forestry University , Kunming , China

4. Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming, 650201 , China

Abstract

AbstractSpeciation is fundamental for building and maintaining biodiversity. The formation of the highly differentiated genomic regions between diverging taxa has been interpreted as a result of divergence with gene flow, linked selection, and reduction in recombination. It is challenging to unravel these nonexclusive processes in shaping genomic divergence. Here, we investigate the relative roles of these processes in shaping genomic differentiation in a montane bird, the Green-backed Tit (Parus monticolus). Our genetic structure and demographic analyses identify that four genetic lineages diverge between 838 and 113 thousand years ago and there is evidence of secondary gene flow. The highly divergent genomic regions do not increase with the divergence time, as we found that the old lineages show relatively fewer numbers and smaller sizes of highly differentiated regions than the young divergent lineages (numbers, 118–138 vs. 156–289; sizes, 5.9–6.9 vs. 7.8–14.5 megabase). Across the genome, the outlier windows show a reduction in nucleotide diversity, absolute genetic divergence, and recombination rate, suggesting recurrent selection in regions with low recombination being the major driver of genomic divergence. Finally, we show that secondary gene flow tends to affect the highly differentiated genomic regions if these regions are less likely to be the targets of selection. Altogether, our study shows how common ancestry, recurrent selection, low recombination rate, and gene flow have contributed to the emergence of genomic islands at different stages of speciation.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3