Regularized regression can improve estimates of multivariate selection in the face of multicollinearity and limited data

Author:

Sztepanacz Jacqueline L1ORCID,Houle David2ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Toronto , Toronto, ON , Canada

2. Department of Biology, Florida State University , Tallahassee, FL , United States

Abstract

Abstract The breeder’s equation, Δz¯=Gβ , allows us to understand how genetics (the genetic covariance matrix, G) and the vector of linear selection gradients β interact to generate evolutionary trajectories. Estimation of β using multiple regression of trait values on relative fitness revolutionized the way we study selection in laboratory and wild populations. However, multicollinearity, or correlation of predictors, can lead to very high variances of and covariances between elements of β, posing a challenge for the interpretation of the parameter estimates. This is particularly relevant in the era of big data, where the number of predictors may approach or exceed the number of observations. A common approach to multicollinear predictors is to discard some of them, thereby losing any information that might be gained from those traits. Using simulations, we show how, on the one hand, multicollinearity can result in inaccurate estimates of selection, and, on the other, how the removal of correlated phenotypes from the analyses can provide a misguided view of the targets of selection. We show that regularized regression, which places data-validated constraints on the magnitudes of individual elements of β, can produce more accurate estimates of the total strength and direction of multivariate selection in the presence of multicollinearity and limited data, and often has little cost when multicollinearity is low. We also compare standard and regularized regression estimates of selection in a reanalysis of three published case studies, showing that regularized regression can improve fitness predictions in independent data. Our results suggest that regularized regression is a valuable tool that can be used as an important complement to traditional least-squares estimates of selection. In some cases, its use can lead to improved predictions of individual fitness, and improved estimates of the total strength and direction of multivariate selection.

Funder

Natural Sciences and Engineering Research Council of Canada

National Science Foundation

Publisher

Oxford University Press (OUP)

Reference47 articles.

1. Comparison of regularized regression methods for ~omics data;Acharjee;Metabolomics,2013

2. Epicuticular compounds of Protopiophila litigata (Diptera: Piophilidae): Identification and sexual selection across two years in the wild;Angell,2020

3. Pollen limitation and its influence on natural selection through seed set;Bartkowska,2015

4. Levels of mate recognition within and between two Drosophila species and their hybrids;Blows,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3