Evolutionary adaptation to climate change

Author:

Edelsparre Allan H1,Fitzpatrick Mark J2,Saastamoinen Marjo34,Teplitsky Céline5

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Toronto , Toronto, ON , Canada

2. Department of Biological Sciences, University of Toronto Scarborough , Toronto, ON , Canada

3. Faculty of Biological and Environmental Sciences, University of Helsinki , Helsinki , Finland

4. Institute of Life Sciences, University of Helsinki , Helsinki , Finland

5. CEFE, Univ Montpellier, CNRS, EPHE, IRD , Montpellier , France

Abstract

Abstract When the notion of climate change emerged over 200 years ago, few speculated as to the impact of rising atmospheric temperatures on biological life. Tens of decades later, research clearly demonstrates that the impact of climate change on life on Earth is enormous, ongoing, and with foreseen effects lasting well into the next century. Responses to climate change have been widely documented. However, the breadth of phenotypic traits involved with evolutionary adaptation to climate change remains unclear. In addition, it is difficult to identify the genetic and/or epigenetic bases of phenotypes adaptive to climate change, in part because it often is not clear whether this change is plastic, genetic, or some combination of the two. Adaptive responses to climate-driven selection also interact with other processes driving genetic changes in general, including demography as well as selection driven by other factors. In this Special Issue, we explore the factors that will impact the overall outcome of climate change adaptation. Our contributions explain that traits involved in climate change adaptation include not only classic phenomena, such as range shifts and environmentally dependent sex determination, but also often overlooked phenomena such as social and sexual conflicts and the expression of stress hormones. We learn how climate-driven selection can be mediated via both natural and sexual selection, effectively influencing key fitness-related traits such as offspring growth and fertility as well as evolutionary potential. Finally, we explore the limits and opportunities for predicting adaptive responses to climate change. This contribution forms the basis of 10 actions that we believe will improve predictions of when and how organisms may adapt genetically to climate change. We anticipate that this Special Issue will inform novel investigations into how the effects of climate change unfold from phenotypes to genotypes, particularly as methodologies increasingly allow researchers to study selection in field experiments.

Funder

Jane and Aatos Erkko foundation

Novo Nordisk

Publisher

Oxford University Press (OUP)

Reference57 articles.

1. Understanding the evolution and stability of the G-matrix;Arnold;Evolution,2008

2. Sexual Conflict

3. On the influence of carbonic acid in the air upon the temperature of the ground;Arrhenius,1896

4. Indirect genetic effects: A cross-disciplinary perspective on empirical studies;Baud,2022

5. Heat stress reveals a fertility debt owing to postcopulatory sexual selection;Baur,2024

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3