Genetic mechanisms of axial patterning in Apeltes quadracus

Author:

Herbert Amy L12ORCID,Lee David1,McCoy Matthew J3,Behrens Veronica C1,Wucherpfennig Julia I1,Kingsley David M12ORCID

Affiliation:

1. Department of Developmental Biology, Stanford University School of Medicine , Stanford, CA, United States

2. Howard Hughes Medical Institute, Stanford University School of Medicine , Stanford, CA, United States

3. Department of Pathology, Stanford University School of Medicine , Stanford, CA, United States

Abstract

Abstract The genetic mechanisms underlying striking axial patterning changes in wild species are still largely unknown. Previous studies have shown that Apeltes quadracus fish, commonly known as fourspine sticklebacks, have evolved multiple different axial patterns in wild populations. Here, we revisit classic locations in Nova Scotia, Canada, where both high-spined and low-spined morphs are particularly common. Using genetic crosses and quantitative trait locus (QTL) mapping, we examine the genetic architecture of wild differences in several axial patterning traits, including the number and length of prominent dorsal spines, the number of underlying median support bones (pterygiophores), and the number and ratio of abdominal and caudal vertebrae along the anterior–posterior body axis. Our studies identify a highly significant QTL on chromosome 6 that controls a substantial fraction of phenotypic variation in multiple dorsal spine and pterygiophore traits (~15%–30% variance explained). An additional smaller-effect QTL on chromosome 14 contributes to the lengths of both the last dorsal spine and anal spine (~9% variance explained). 1 or no QTL were detected for differences in the numbers of abdominal and caudal vertebrae. The major-effect patterning QTL on chromosome 6 is centered on the HOXDB gene cluster, where sequence changes in a noncoding axial regulatory enhancer have previously been associated with prominent dorsal spine differences in Apeltes. The QTL that have the largest effects on dorsal spine number and length traits map to different chromosomes in Apeltes and Gasterosteus, 2 distantly related stickleback genera. However, in both genera, the major-effect QTL for prominent skeletal changes in wild populations maps to linked clusters of powerful developmental control genes. This study, therefore, bolsters the body of evidence that regulatory changes in developmental gene clusters provide a common genetic mechanism for evolving major morphological changes in natural species.

Funder

Helen Hay Whitney Foundation Postdoctoral Fellowship

Wu Tsai Neurosciences Postdoctoral Fellowship

Stanford Bio-X Summer Undergraduate Research Fellowship

Publisher

Oxford University Press (OUP)

Reference57 articles.

1. Hox genes, homeosis and the evolution of segment identity: No need for hopeless monsters;Akam;The International Journal of Developmental Biology,1998

2. Adaptation via pleiotropy and linkage: Association mapping reveals a complex genetic architecture within the stickleback Eda locus;Archambeault;Evolution Letters,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3