Single Local Application of TGF-β Promotes a Proregenerative State Throughout a Chronically Injured Nerve

Author:

Sulaiman Wale12,Dreesen Thomas2,Nguyen Doan2

Affiliation:

1. Department of Neurosurgery, Back and Spine Center, Ochsner Neuroscience Institute, Ochsner Health System, and Tulane University Medical Center, New Orleans, Louisiana

2. Laboratory of Neural Injury and Regeneration, Institute of Translational Research, Ochsner Medical Center, New Orleans, Louisiana

Abstract

Abstract BACKGROUND The lack of nerve regeneration and functional recovery occurs frequently when injuries involve large nerve trunks because insufficient mature axons reach their targets in the distal stump and because of the loss of neurotrophic support, primarily from Schwann cells (SCs). OBJECTIVE To investigate whether a single application of transforming growth factor-beta (TGF-β) plus forskolin or forskolin alone can promote and support axonal regeneration through the distal nerve stump. METHODS Using a delayed repair rat model of nerve injury, we transected the tibial nerve. After 8 wk, end-to-end repair was done and the repair site was treated with saline, forskolin, or TGF- β plus forskolin. After 6 wk, nerve sections consisting of the proximal stump, distal to the site of repair, and the most distal part of the nerve stump were removed for nerve histology, axon counts, and immunohistochemistry for activated SCs (S100), macrophages (CD68), cell proliferation (Ki67), p75NGFR, and apoptosis (activated caspase-3). RESULTS TGF-β plus forskolin significantly increased the numbers of axons regenerated distal to the repair site and the most distal nerve sections. Both treatments significantly increased the numbers of axons regenerated in the most distal nerve sections compared to saline treated. Both treatments exhibited extended expression of regeneration-associated marker proteins. CONCLUSION TGF-β plus forskolin treatment of chronically injured nerve improved axonal regeneration and increased expression of regeneration-associated proteins beyond the repair site. This suggests that a single application at the site of repair has mitogenic effects that extended distally and may potentially overcome the decrease in regenerated axon over long distance.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

Reference36 articles.

1. Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy;Fu;J Neurosci,1995

2. Nerve surgery: where we are and where we might go;Kline;Neurosurg Clin N Am,2008

3. Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application;Sulaiman;Ochsner J.,2013

4. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury;Gaudet;J Neuroinflamm,2011

5. Role of chronic Schwann cell denervation in poor functional recovery after;Sulaiman;Neurosurgery.,2009

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3