The mechanism of regulation of photosystem I cross-section in the pennate diatom Phaeodactylum tricornutum

Author:

Giovagnetti Vasco1,Ruban Alexander V1ORCID

Affiliation:

1. Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK

Abstract

Abstract Photosystems possess distinct fluorescence emissions at low (77K) temperature. PSI emits in the long-wavelength region at ~710–740 nm. In diatoms, a successful clade of marine primary producers, the contribution of PSI-associated emission (710–717 nm) has been shown to be relatively small. However, in the pennate diatom Phaeodactylum tricornutum, the source of the long-wavelength emission at ~710 nm (F710) remains controversial. Here, we addressed the origin and modulation of F710 fluorescence in this alga grown under continuous and intermittent light. The latter condition led to a strong enhancement in F710. Biochemical and spectral properties of the photosynthetic complexes isolated from thylakoid membranes were investigated for both culture conditions. F710 emission appeared to be associated with PSI regardless of light acclimation. To further assess whether PSII could also contribute to this emission, we decreased the concentration of PSII reaction centres and core antenna by growing cells with lincomycin, a chloroplast protein synthesis inhibitor. The treatment did not diminish F710 fluorescence. Our data suggest that F710 emission originates from PSI under the conditions tested and is enhanced in intermittent light-grown cells due to increased energy flow from the FCP antenna to PSI.

Funder

BBSRC

The Royal Society Wolfson Research Merit Award

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3