Interclonal variation, coordination, and trade-offs between hydraulic conductance and gas exchange in Pinus radiata: consequences on plant growth and wood density

Author:

Rodríguez-Gamir Juan12ORCID,Xue Jianming2ORCID,Meason Dean F3ORCID,Clearwater Michael4ORCID,Clinton Peter W2ORCID,Domec Jean-Christophe56ORCID

Affiliation:

1. Producción Vegetal en zonas tropicales y subtropicales, Instituto Canario de Investigaciones Agrarias (ICIA), Ctra de El boquerón s/n, 38270 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain

2. Forest Systems, Scion, Christchurch, New Zealand

3. Forest Systems, Scion, Private Bag 3020, Rotorua, New Zealand

4. Environmental Research Institute, University of Waikato, Private Bag 3105, Hamilton, New Zealand

5. Bordeaux Sciences Agro, UMR INRA ISPA 1391, Gradignan, France

6. Nicholas School of the Environment, Duke University, Durham, NC, USA

Abstract

Abstract Stem growth reflects genetic and phenotypic differences within a tree species. The plant hydraulic system regulates the carbon economy, and therefore variations in growth and wood density. A whole-organism perspective, by partitioning the hydraulic system, is crucial for understanding the physical and physiological processes that coordinately mediate plant growth. The aim of this study was to determine whether the relationships and trade-offs between (i) hydraulic traits and their relative contribution to the whole-plant hydraulic system, (ii) plant water transport, (iii) CO2 assimilation, (iv) plant growth, and (v) wood density are revealed at the interclonal level within a variable population of 10 Pinus radiata (D. Don) clones for these characters. We demonstrated a strong coordination between several plant organs regarding their hydraulic efficiency. Hydraulic efficiency, gas exchange, and plant growth were intimately linked. Small reductions in stem wood density were related to a large increase in sapwood hydraulic efficiency, and thus to plant growth. However, stem growth rate was negatively related to wood density. We discuss insights explaining the relationships and trade-offs of the plant traits examined in this study. These insights provide a better understanding of the existing coordination, likely to be dependent on genetics, between the biophysical structure of wood, plant growth, hydraulic partitioning, and physiological plant functions in P. radiata.

Funder

National Science Foundation

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria

French Agence Nationale de la recherche

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3