The front line of defence: a meta-analysis of apoplastic proteases in plant immunity

Author:

Godson Alice1,van der Hoorn Renier A L1ORCID

Affiliation:

1. The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, UK

Abstract

Abstract Secreted proteases act at the front line of defence and play pivotal roles in disease resistance. However, the criteria for apoplastic immune proteases are not always defined and followed. Here, we critically reviewed 46 apoplastic proteases that function in plant defence. We found that most apoplastic immune proteases are induced upon infection, and 17 proteases are genetically required for the immune response. Proteolytic activity has been confirmed for most of the proteases but is rarely shown to be required for biological function, and the apoplastic location of proteases can be subjective and dynamic. Pathogen-derived inhibitors have only been described for cysteine and serine proteases, and the selection pressure acting on immune proteases is rarely investigated. We discuss six different mechanisms by which these proteases mediate plant immunity and summarize the challenges for future research.

Funder

Biotechnology and Biological Sciences Research Council

Interdisciplinary Biosciences DTP

European Research Council

BBSRC

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3