Affiliation:
1. NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
Abstract
Abstract
Although a growing number of mechanosensitive ion channels are being identified in plant systems, the molecular mechanisms by which they function are still under investigation. Overexpression of the mechanosensitive ion channel MSL (MscS-Like)10 fused to green fluorescent protein (GFP) triggers a number of developmental and cellular phenotypes including the induction of cell death, and this function is influenced by seven phosphorylation sites in its soluble N-terminus. Here, we show that these and other phenotypes required neither overexpression nor a tag, and could also be induced by a previously identified point mutation in the soluble C-terminus (S640L). The promotion of cell death and hyperaccumulation of H2O2 in 35S:MSL10S640L-GFP overexpression lines was suppressed by N-terminal phosphomimetic substitutions, and the soluble N- and C-terminal domains of MSL10 physically interacted. We propose a three-step model by which tension-induced conformational changes in the C-terminus could be transmitted to the N-terminus, leading to its dephosphorylation and the induction of adaptive responses. Taken together, this work expands our understanding of the molecular mechanisms of mechanotransduction in plants.
Funder
National Science Foundation
NSF Science and Technology Center
NSF Graduate Research Fellowship
Publisher
Oxford University Press (OUP)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献