MxMPK6-2-bHLH104 interaction is involved in reactive oxygen species signaling in response to iron deficiency in apple rootstock

Author:

Li Duyue12,Sun Qiran12,Zhang Guifen12,Zhai Longmei12,Li Keting12,Feng Yi12,Wu Ting12,Zhang Xinzhong12ORCID,Xu Xuefeng12,Wang Yi12ORCID,Han Zhenhai12

Affiliation:

1. College of Horticulture, China Agricultural University, Beijing, P. R. China

2. Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China

Abstract

Abstract Iron (Fe) is a trace element necessary for plant growth. Many land plants have evolved a set of mechanisms associated with the Fe absorption process to deal with the problem of insufficient Fe supply in the soil. During Fe absorption, reactive oxygen species (ROS) can be used as a signal to initiate a response to stress caused by Fe deficiency. However, the molecular mechanisms underlying the involvement of ROS in the Fe deficiency stress response remains unclear. In this study, we have identified a kinase, MxMPK6-2, from Malus xiaojinensis, an apple rootstock that is highly efficient at Fe absorption. MxMPK6-2 has been shown to be responsive to ROS signals during Fe deficiency, and MxMPK6-2 overexpression in apple calli enhanced its tolerance to Fe deficiency. We further screened for proteins in the Fe absorption pathway and identified MxbHLH104, a transcription factor which interacts with MxMPK6-2. MxbHLH104 can be phosphorylated by MxMPK6-2 in vivo, and we confirmed that its phosphorylation increased Fe absorption in apple calli under Fe deficiency, with the presence of ROS promoting this process. Overall, we have demonstrated that MxMPK6-2 is responsive to ROS signaling during Fe deficiency, and is able to control its response by regulating MxbHLH104.

Funder

National Natural Science Foundation of China

China Agriculture Research System

Beijing Science and Technology Innovation and Service Capacity

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3