Canditate metabolites for ash dieback tolerance in Fraxinus excelsior

Author:

Nemesio-Gorriz Miguel1ORCID,Menezes Riya C2,Paetz Christian2,Hammerbacher Almuth23,Steenackers Marijke4,Schamp Kurt4,Höfte Monica5,Svatoš Aleš2,Gershenzon Jonathan2,Douglas Gerry C1

Affiliation:

1. Forestry Development Department, Teagasc, Dublin, Ireland

2. Max Planck Institute for Chemical Ecology, Jena, Germany

3. Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa

4. Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium

5. Department of Crop Protection, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Ghent, Belgium

Abstract

Abstract Ash dieback, a forest epidemic caused by the invasive fungus Hymenoscyphus fraxineus, threatens ash trees throughout Europe. Within Fraxinus excelsior populations, a small proportion of genotypes show a low susceptibility to the pathogen. We compared the metabolomes from a cohort of low-susceptibility ash genotypes with a cohort of high-susceptibility ash genotypes. This revealed two significantly different chemotypes. A total of 64 candidate metabolites associated with reduced or increased susceptibility in the chemical families secoiridoids, coumarins, flavonoids, phenylethanoids, and lignans. Increased levels of two coumarins, fraxetin and esculetin, were strongly associated with reduced susceptibility to ash dieback. Both coumarins inhibited the growth of H. fraxineus in vitro when supplied at physiological concentrations, thereby validating their role as markers for low susceptibility to ash dieback. Similarly, fungal growth inhibition was observed when the methanolic bark extract of low-susceptibility ash genotypes was supplied. Our findings indicate the presence of constitutive chemical defense barriers against ash dieback in ash.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3