Variations of electric potential in the xylem of tree trunks associated with water content rhythms

Author:

Hao Zhibin1,Li Wenbin2,Hao Xiaomie3

Affiliation:

1. College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin, China

2. School of Technology, Beijing Forestry University, Beijing, China

3. No. 95 Fengya Road, Xiqing District, Tianjin, China

Abstract

Abstract Instantaneous electrical responses in plants have been widely studied, but the mechanism of spontaneous, periodic electric potential alternations in the xylem of tree trunks remains controversial. The generation of the electric potential can be explained by the electrode potential, which depends on ion concentrations near electrodes. However, several different hypotheses about its periodic variations have been proposed, including streaming potential, ion diffusion, charge transport, and oxygen turnover. Here, we performed long-term measurements on the electric potential and water content in the xylem of trees, and observed changes in the electric potential and transpiration rate in response to varied numbers of leaves, light radiation, temperature, and relative air humidity. The electric potential showed a distinct seasonal trend, combined with daily rhythms, and could be affected by environmental changes. Rapid changes in the electric potential routinely lagged behind those of the transpiration rate, but their ranges of change were proportional. Both annual and diurnal patterns of the electric potential were synchronous with the trees’ water content. Moreover, we found potential function relationships between the electric potential and water content. Accordingly, we propose a new perspective, that the variations of the electric potential in tree xylem could be associated with water content rhythms.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3