Macroalgal–bacterial interactions: identification and role of thallusin in morphogenesis of the seaweed Ulva (Chlorophyta)

Author:

Alsufyani Taghreed12,Califano Gianmaria1,Deicke Michael1,Grueneberg Jan13,Weiss Anne13,Engelen Aschwin H4,Kwantes Michiel1,Mohr Jan Frieder13,Ulrich Johann F1,Wichard Thomas13ORCID

Affiliation:

1. Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany

2. Algal Research Laboratory, Chemistry Department, Science Faculty, Taif University, Taif, Saudi Arabia

3. Jena School for Microbial Communication, Jena, Germany

4. Centre for Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal

Abstract

Abstract Macroalgal microbiomes have core functions related to biofilm formation, growth, and morphogenesis of seaweeds. In particular, the growth and development of the sea lettuce Ulva spp. (Chlorophyta) depend on bacteria releasing morphogenetic compounds. Under axenic conditions, the macroalga Ulva mutabilis develops a callus-like phenotype with cell wall protrusions. However, co-culturing with Roseovarius sp. (MS2) and Maribacter sp. (MS6), which produce various stimulatory chemical mediators, completely recovers morphogenesis. This ecological reconstruction forms a tripartite community which can be further studied for its role in cross-kingdom interactions. Hence, our study sought to identify algal growth- and morphogenesis-promoting factors (AGMPFs) capable of phenocopying the activity of Maribacter spp. We performed bioassay-guided solid-phase extraction in water samples collected from U. mutabilis aquaculture systems. We uncovered novel ecophysiological functions of thallusin, a sesquiterpenoid morphogen, identified for the first time in algal aquaculture. Thallusin, released by Maribacter sp., induced rhizoid and cell wall formation at a concentration of 11 pmol l−1. We demonstrated that gametes acquired the iron complex of thallusin, thereby linking morphogenetic processes with intracellular iron homeostasis. Understanding macroalgae–bacteria interactions permits further elucidation of the evolution of multicellularity and cellular differentiation, and development of new applications in microbiome-mediated aquaculture systems.

Funder

Deutsche Forschungsgemeinschaft

Jena School for Microbial Communication

European Union’s Horizon

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3