Unravelling the modus operandi of phytosiderophores during zinc uptake in rice: the importance of geochemical gradients and accurate stability constants

Author:

Northover George H R1ORCID,Garcia-España Enrique2,Weiss Dominik J13ORCID

Affiliation:

1. Department of Earth Science and Engineering, Imperial College London, London, UK

2. Instituto de Ciencia Molecular, University of Valencia, Paterna, Spain

3. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA

Abstract

Abstract Micronutrient deficiencies threaten global food production. Attempts to biofortify crops rely on a clear understanding of micronutrient uptake processes. Zinc deficiency in rice is a serious problem. One of the pathways proposed for the transfer of zinc from soils into rice plants involves deoxymugineic acid (DMA), a phytosiderophore. The idea that phytosiderophores play a wider role in nutrition of Poaceae beyond iron is well established. However, key mechanistic details of the DMA-assisted zinc uptake pathway in rice remain uncertain. In particular, questions surround the form in which zinc from DMA is taken up [i.e. as free aqueous Zn(II) or as Zn(II)–DMA complexes] and the role of competitive behaviour of other metals with DMA. We propose that an accurate description of the effect of changes in pH, ligand concentration, and ionic strength on the stability of Zn(II)–DMA complexes in the presence of other metals in the microenvironment around root cells is critical for understanding the modus operandi of DMA during zinc uptake. To that end, we reveal the importance of geochemical changes in the microenvironment around root cells and demonstrate the effect of inaccurate stability constants on speciation models.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3