Integrating multiple omics to identify common and specific molecular changes occurring in Arabidopsis under chronic nitrate and sulfate limitations

Author:

Luo Jie12ORCID,Havé Marien1ORCID,Clément Gilles1ORCID,Tellier Frédérique1,Balliau Thierry3ORCID,Launay-Avon Alexandra45ORCID,Guérard Florence45ORCID,Zivy Michel3ORCID,Masclaux-Daubresse Céline1ORCID

Affiliation:

1. Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France

2. College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China

3. UMR GQE- le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France

4. Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France

5. Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France

Abstract

Abstract Plants have fundamental dependences on nitrogen and sulfur and frequently have to cope with chronic limitations when their supply is sub-optimal. This study aimed at characterizing the metabolomic, proteomic, and transcriptomic changes occurring in Arabidopsis leaves under chronic nitrate (Low-N) and chronic sulfate (Low-S) limitations in order to compare their effects, determine interconnections, and examine strategies of adaptation. Metabolite profiling globally revealed opposite effects of Low-S and Low-N on carbohydrate and amino acid accumulations, whilst proteomic data showed that both treatments resulted in increases in catabolic processes, stimulation of mitochondrial and cytosolic metabolism, and decreases in chloroplast metabolism. Lower abundances of ribosomal proteins and translation factors under Low-N and Low-S corresponded with growth limitation. At the transcript level, the major and specific effect of Low-N was the enhancement of expression of defence and immunity genes. The main effect of chronic Low-S was a decrease in transcripts of genes involved in cell division, DNA replication, and cytoskeleton, and an increase in the expression of autophagy genes. This was consistent with a role of target-of-rapamycin kinase in the control of plant metabolism and cell growth and division under chronic Low-S. In addition, Low-S decreased the expression of several NLP transcription factors, which are master actors in nitrate sensing. Finally, both the transcriptome and proteome data indicated that Low-S repressed glucosinolate synthesis, and that Low-N exacerbated glucosinolate degradation. This showed the importance of glucosinolate as buffering molecules for N and S management.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3