Marker-based crop model-assisted ideotype design to improve avoidance of abiotic stress in bread wheat

Author:

Bogard Matthieu1ORCID,Hourcade Delphine1,Piquemal Benoit2,Gouache David3,Deswartes Jean-Charles4,Throude Mickael5ORCID,Cohan Jean-Pierre6ORCID

Affiliation:

1. Arvalis – Institut du Végétal, 6 Chemin de la côte vieille, Baziège, France

2. Arvalis – Institut du Végétal, station expérimentale, Boigneville, France

3. Terres Inovia, 11 rue Gaspard Monge, Pessac, France

4. Arvalis – Institut du Végétal, Route de Châteaufort ZA des graviers, Villiers-le-Bâcle, France

5. Biogemma: Centre de Recherche de Chappes, Route d’Ennezat, CS, Chappes, France

6. Arvalis – Institut du Végétal, Station expérimentale de La Jaillière, La Chapelle Saint-Sauveur, Loireauxence, France

Abstract

Abstract Wheat phenology allows escape from seasonal abiotic stresses including frosts and high temperatures, the latter being forecast to increase with climate change. The use of marker-based crop models to identify ideotypes has been proposed to select genotypes adapted to specific weather and management conditions and anticipate climate change. In this study, a marker-based crop model for wheat phenology was calibrated and tested. Climate analysis of 30 years of historical weather data in 72 locations representing the main wheat production areas in France was performed. We carried out marker-based crop model simulations for 1019 wheat cultivars and three sowing dates, which allowed calculation of genotypic stress avoidance frequencies of frost and heat stress and identification of ideotypes. The phenology marker-based crop model allowed prediction of large genotypic variations for the beginning of stem elongation (GS30) and heading date (GS55). Prediction accuracy was assessed using untested genotypes and environments, and showed median genotype prediction errors of 8.5 and 4.2 days for GS30 and GS55, respectively. Climate analysis allowed the definition of a low risk period for each location based on the distribution of the last frost and first heat days. Clustering of locations showed three groups with contrasting levels of frost and heat risks. Marker-based crop model simulations showed the need to optimize the genotype depending on sowing date, particularly in high risk environments. An empirical validation of the approach showed that it holds good promises to improve frost and heat stress avoidance.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3