Genetic basis of phenotypic plasticity and genotype × environment interactions in a multi-parental tomato population

Author:

Diouf Isidore1,Derivot Laurent2,Koussevitzky Shai3,Carretero Yolande1,Bitton Frédérique1,Moreau Laurence4,Causse Mathilde1

Affiliation:

1. INRAE, GAFL, Monfavet, France

2. GAUTIER Semences, route d’Avignon, Eyragues, France

3. Hazera – Seeds of Growth, Berurim M.P Shikmim, Israel

4. UMR GQE-Le Moulon, INRA, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France

Abstract

AbstractDeciphering the genetic basis of phenotypic plasticity and genotype × environment interactions (G×E) is of primary importance for plant breeding in the context of global climate change. Tomato (Solanum lycopersicum) is a widely cultivated crop that can grow in different geographical habitats and that displays a great capacity for expressing phenotypic plasticity. We used a multi-parental advanced generation intercross (MAGIC) tomato population to explore G×E and plasticity for multiple traits measured in a multi-environment trial (MET) comprising optimal cultural conditions together with water deficit, salinity, and heat stress over 12 environments. Substantial G×E was observed for all the traits measured. Different plasticity parameters were estimated by employing Finlay–Wilkinson and factorial regression models and these were used together with genotypic means for quantitative trait loci (QTL) mapping analyses. In addition, mixed linear models were also used to investigate the presence of QTL × environment interactions. The results highlighted a complex genetic architecture of tomato plasticity and G×E. Candidate genes that might be involved in the occurrence of G×E are proposed, paving the way for functional characterization of stress response genes in tomato and for breeding climate-adapted cultivars.

Funder

Agence Nationale de la Recherche

TomEpiSet

West Africa Agricultural Productivity Project

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3