Global analysis of non-animal peroxidases provides insights into the evolution of this gene family in the green lineage

Author:

Mbadinga Mbadinga Duchesse Lacour1,Li Qiang12,Ranocha Philippe1,Martinez Yves3,Dunand Christophe1

Affiliation:

1. Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France

2. Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, PR China

3. Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France

Abstract

AbstractThe non-animal peroxidases belong to a superfamily of oxidoreductases that reduce hydrogen peroxide and oxidize numerous substrates. Since their initial characterization in 1992, a number of studies have provided an understanding of the origin and evolution of this protein family. Here, we report a comprehensive evolutionary analysis of non-animal peroxidases using integrated in silico and biochemical approaches. Thanks to the availability of numerous genomic sequences from more than 2500 species belonging to 14 kingdoms together with expert and comprehensive annotation of peroxidase sequences that have been centralized in a dedicated database, we have been able to use phylogenetic reconstructions to increase our understanding of the evolutionary processes underlying the diversification of non-animal peroxidases. We analysed the distribution of all non-animal peroxidases in more than 200 eukaryotic organisms in silico. First, we show that the presence or absence of non-animal peroxidases correlates with the presence or absence of certain organelles or with specific biological processes. Examination of almost 2000 organisms determined that ascorbate peroxidases (APxs) and cytochrome c peroxidases (CcPs) are present in those containing chloroplasts and mitochondria, respectively. Plants, which contain both organelles, are an exception and contain only APxs without CcP. Class II peroxidases (CII Prxs) are only found in fungi with wood-decay and plant-degradation abilities. Class III peroxidases (CIII Prxs) are only found in streptophyte algae and land plants, and have been subjected to large family expansion. Biochemical activities of APx, CcP, and CIII Prx assessed using protein extracts from 30 different eukaryotic organisms support the distribution of the sequences resulting from our in silico analysis. The biochemical results confirmed both the presence and classification of the non-animal peroxidase encoding sequences.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3