Affiliation:
1. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal. Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins, Santiago, Chile
Abstract
Abstract
As sessile organisms, plants are exposed to multiple abiotic stresses commonly found in nature. To survive, plants have developed complex responses that involve genetic, epigenetic, cellular, and morphological modifications. Among different environmental cues, salt stress has emerged as a critical problem contributing to yield losses and marked reductions in crop production. Moreover, as the climate changes, it is expected that salt stress will have a significant impact on crop production in the agroindustry. On a mechanistic level, salt stress is known to be regulated by the crosstalk of many signaling molecules such as phytohormones, with auxin having been described as a key mediator of the process. Auxin plays an important role in plant developmental responses and stress, modulating a complex balance of biosynthesis, transport, and signaling that among other things, finely tune physiological changes in plant architecture and Na+ accumulation. In this review, we describe current knowledge on auxin’s role in modulating the salt stress response. We also discuss recent and potential biotechnological approaches to tackling salt stress.
Funder
National Agency for Research and Development
Fondo Nacional de Desarrollo Científico y Tecnológico
Publisher
Oxford University Press (OUP)
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献