Modelling the spatial crosstalk between two biochemical signals explains wood formation dynamics and tree-ring structure

Author:

Hartmann Félix P1ORCID,Rathgeber Cyrille B K2ORCID,Badel Éric1ORCID,Fournier Meriem2ORCID,Moulia Bruno1ORCID

Affiliation:

1. Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France

2. Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France

Abstract

Abstract In conifers, xylogenesis during a growing season produces a very characteristic tree-ring structure: large, thin-walled earlywood cells followed by narrow, thick-walled latewood cells. Although many factors influence the dynamics of differentiation and the final dimensions of xylem cells, the associated patterns of variation remain very stable from one year to the next. While radial growth is characterized by an S-shaped curve, the widths of xylem differentiation zones exhibit characteristic skewed bell-shaped curves. These elements suggest a strong internal control of xylogenesis. It has long been hypothesized that much of this regulation relies on a morphogenetic gradient of auxin. However, recent modelling studies have shown that while this hypothesis could account for the dynamics of stem radial growth and the zonation of the developing xylem, it failed to reproduce the characteristic tree-ring structure. Here, we investigated the hypothesis of regulation by a crosstalk between auxin and a second biochemical signal, by using computational morphodynamics. We found that, in conifers, such a crosstalk is sufficient to simulate the characteristic features of wood formation dynamics, as well as the resulting tree-ring structure. In this model, auxin controls cell enlargement rates while another signal (e.g. cytokinin, tracheary element differentiation inhibitory factor) drives cell division and auxin polar transport.

Funder

French National Research Agency

Investissements d’Avenir

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3