Affiliation:
1. Clinic for Internal Medicine III, University of the Saarland, Homburg, Germany
2. Cardiology Unit, IRCCS Policlinic Hospital San Martino & Department of Internal Medicine, University of Genova, Genova, Italy
Abstract
Abstract
The effects of intense glycaemic control on macrovascular complications in patients with type 2 diabetes are incompletely resolved, and many glucose-lowering medications negatively affect cardiovascular outcomes. Recently, the EMPA-REG OUTCOME trial revealed that empagliflozin, an inhibitor of the sodium-glucose cotransporter 2 (SGLT2), substantially reduced the risk of hospitalization for heart failure, death from cardiovascular causes, and all-cause mortality in patients with type 2 diabetes mellitus at high cardiovascular risk. Although several mechanisms may explain this benefit, plasma volume contraction and a metabolic switch favouring cardiac ketone bodies oxidation have recently been proposed as the major drivers. Recent experimental work has prompted a novel and intriguing hypothesis, according to which empagliflozin may reduce intracellular sodium (Na+) load observed in failing cardiac myocytes by inhibiting the sarcolemmal Na+/H+ exchanger. Since elevated intracellular Na+ hampers mitochondrial Ca2+ handling and thereby, deteriorates energy supply and demand matching and the mitochondrial antioxidative defence systems, empagliflozin may positively affect cardiac function by restoring mitochondrial function, and redox state in the failing heart. Here, we review the current evidence for such a third mechanistic hypothesis, which may foster heart failure and diabetes research into a new direction which harbours several potential targets for therapeutic intervention.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Oxford University Press (OUP)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献