A minimum set of regulators to thrive in the ocean

Author:

Lambrecht S Joke1,Steglich Claudia1ORCID,Hess Wolfgang R1ORCID

Affiliation:

1. Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany

Abstract

ABSTRACT Marine cyanobacteria of the genus Prochlorococcus thrive in high cell numbers throughout the euphotic zones of the world's subtropical and tropical oligotrophic oceans, making them some of the most ecologically relevant photosynthetic microorganisms on Earth. The ecological success of these free-living phototrophs suggests that they are equipped with a regulatory system competent to address many different stress situations. However, Prochlorococcus genomes are compact and streamlined, with the majority encoding only five different sigma factors, five to six two-component systems and eight types of other transcriptional regulators. Here, we summarize the existing information about the functions of these protein regulators, about transcriptomic responses to defined stress conditions, and discuss the current knowledge about riboswitches, RNA-based regulation and the roles of certain metabolites as co-regulators. We focus on the best-studied isolate, Prochlorococcus MED4, but extend to other strains and ecotypes when appropriate, and we include some information gained from metagenomic and metatranscriptomic analyses.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3