Limitations of microbial iron reduction under extreme conditions

Author:

Nixon Sophie L1ORCID,Bonsall Emily2,Cockell Charles S3

Affiliation:

1. Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester , Manchester, M1 7DN, United Kingdom

2. Biological and Environmental Sciences, University of Stirling , Stirling, FK9 4LA, United Kingdom

3. UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, EH9 3FD, United Kingdom

Abstract

Abstract Microbial iron reduction is a widespread and ancient metabolism on Earth, and may plausibly support microbial life on Mars and beyond. Yet, the extreme limits of this metabolism are yet to be defined. To investigate this, we surveyed the recorded limits to microbial iron reduction in a wide range of characterized iron-reducing microorganisms (n = 141), with a focus on pH and temperature. We then calculated Gibbs free energy of common microbially mediated iron reduction reactions across the pH–temperature habitability space to identify thermodynamic limits. Comparing predicted and observed limits, we show that microbial iron reduction is generally reported at extremes of pH or temperature alone, but not when these extremes are combined (with the exception of a small number of acidophilic hyperthermophiles). These patterns leave thermodynamically favourable combinations of pH and temperature apparently unoccupied. The empty spaces could be explained by experimental bias, but they could also be explained by energetic and biochemical limits to iron reduction at combined extremes. Our data allow for a review of our current understanding of the limits to microbial iron reduction at extremes and provide a basis to test more general hypotheses about the extent to which biochemistry establishes the limits to life.

Funder

Science and Technology Facilities Council

NERC

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3