Bacteriophage-mediated manipulation of the gut microbiome – promises and presents limitations

Author:

Rasmussen Torben Sølbeck1ORCID,Koefoed Anna Kirstine1,Jakobsen Rasmus Riemer1,Deng Ling1,Castro-Mejía Josué L1,Brunse Anders2,Neve Horst3,Vogensen Finn Kvist1,Nielsen Dennis Sandris1

Affiliation:

1. Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26 4th floor - 1958, Frederiksberg, Denmark

2. Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 2nd floor - 1870, Frederiksberg, Denmark

3. Institute of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Straße 1 - 24103, Kiel, Germany

Abstract

ABSTRACT Gut microbiome (GM) composition and function are linked to human health and disease, and routes for manipulating the GM have become an area of intense research. Due to its high treatment efficacy, the use of fecal microbiota transplantation (FMT) is generally accepted as a promising experimental treatment for patients suffering from GM imbalances (dysbiosis), e.g. caused by recurrent Clostridioides difficile infections (rCDI). Mounting evidence suggests that bacteriophages (phages) play a key role in successful FMT treatment by restoring the dysbiotic bacterial GM. As a refinement to FMT, removing the bacterial component of donor feces by sterile filtration, also referred to as fecal virome transplantation (FVT), decreases the risk of invasive infections caused by bacteria. However, eukaryotic viruses and prophage-encoded virulence factors remain a safety issue. Recent in vivo studies show how cascading effects are initiated when phage communities are transferred to the gut by e.g. FVT, which leads to changes in the GM composition, host metabolome, and improve host health such as alleviating symptoms of obesity and type-2-diabetes (T2D). In this review, we discuss the promises and limitations of FVT along with the perspectives of using FVT to treat various diseases associated with GM dysbiosis.

Funder

Danish Council for Independent Research

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3