Co-occurrence of m.15992A>G and m.15077G>A Is Associated With a High Penetrance of Maternally Inherited Hypertension in a Chinese Pedigree

Author:

Guo Hao12,Guo Li3,Yuan Yong4,Liang Xin-yue15,Bi Rui67

Affiliation:

1. Department of Cardiology, 1st Affiliated Hospital of Kunming Medical University, Kunming, China

2. Department of Cardiology, Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China

3. Department of Radiology, 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China

4. Department of emergency, 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China

5. Department of Cardiology, Graduate School of the Kunming Medical University, Kunming, China

6. Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China

7. Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China

Abstract

Abstract BACKGROUND Mitochondrial DNA (mtDNA) pathogenic variants have been identified to be associated with maternally inherited essential hypertension (MIEH). However, the distinctive clinical features and molecular pathogenesis of MIEH are not fully understood. METHODS In this study, we collected a Chinese MIEH family with extraordinary higher penetrance of essential hypertension (88.89%) and early ages of onset (31–40 years old), and performed clinical and genetic characterization for this family. The complete mitochondrial genome of the proband was sequenced and analyzed. RESULTS The maternally related members in this family were presented with severe increased blood pressure, left ventricular remodeling, and metabolic abnormalities. Through sequencing the entire mtDNA of the proband and performing systematic analysis of the mtDNA variants with a phylogenic approach, we identified a potentially pathogenic tRNA variant (m.15992A>G in the MT-TP gene) that may account for the MIEH in this family. One nonsynonymous variant (m.15077G>A in the MT-CYB gene) was identified to play a synergistic role with m.15992A>G to cause a high penetrance of MIEH. CONCLUSIONS Our results, together with previous findings, have indicated that tRNA pathogenic variants in the mtDNA could act important roles in the pathogenesis of MIEH through reducing mitochondrial translation and disturbing mitochondrial function.

Funder

National Natural Science Foundation of China

Yunnan Applied Basic Research Projects

Yunnan Senior Medical Technical Talent Project

Publisher

Oxford University Press (OUP)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3