Production and molecular weight variation of poly-γ-glutamic acid using a recombinant Bacillus subtilis with various Pgs-component ratios

Author:

Sawada Kazuhisa12,Hagihara Hiroshi1,Takimura Yasushi1,Kataoka Masakazu2

Affiliation:

1. Global R&D—Biological Science Research, Kao Corporation , Haga, Tochigi , Japan

2. Department of Biomedical Engineering, Graduate School of Shinshu University , Wakasato, Nagano , Japan

Abstract

ABSTRACT Poly-γ-glutamic acid (PGA) has been of interest as a sustainable biopolymer in industrial applications. PGA biosynthesis in Bacillus subtilis is catalyzed by a transmembrane protein complex comprising PgsB, PgsC, and PgsA. To determine the Pgs component responsible for PGA overproduction, we constructed recombinants in which the promoter of the host-derived pgs gene was replaced with another host-derived gene promoter. These recombinants were then transformed using high-copy-number plasmids with various pgs-gene combinations to enhance Pgs component in different ratios. Subsequently, PGA production was investigated in batch cultures with l-glutamate supplemented medium. The recombinant strain enhanced with pgsB alone significantly overproduced PGA (maximum production 35.8 g/L) than either the pgsC- or pgsA-enhanced strain. The molecular weight of the PGA produced with the pgsB-enhanced strain was also greater than that for the pgsC- or pgsA-enhanced strain (approximately 10-fold). Hence, PgsB enhancement alone contributes to PGA overproduction with increased molecular weight.

Funder

Kao Corporation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3