Quantification of polyprenyl diphosphates in Escherichia coli cells using high-performance liquid chromatography

Author:

Jitsukawa Tomotaka1,Watanabe Soichiro1,Shigeri Yasushi2,Fujisaki Shingo1ORCID

Affiliation:

1. Department of Biomolecular Science, Faculty of Science, Toho University , Funabashi, Chiba , Japan

2. Department of Chemistry, Wakayama Medical University , Wakayama, Wakayama , Japan

Abstract

ABSTRACT Dephosphorylation of undecaprenyl diphosphate is a crucial step in the synthesis of undecaprenyl phosphate, which is essential for cell wall synthesis. We have developed a method for the quantification of intracellular polyprenyl diphosphates, which have never before been measured directly. Polyprenyl phosphates and diphosphates prepared by chemical phosphorylation of polyprenols from Staphylococcus aureus were used to establish the conditions for fractionation by ion-exchange chromatography and high-performance liquid chromatography (HPLC). By using an elution solvent containing tetraethylammonium phosphate as an ion-pair reagent for HPLC, polyprenyl phosphate and polyprenyl diphosphate with carbon numbers from 40 to 55 could be detected as separate peaks from the reversed-phase column. This analytical method was applied to lipids extracted from Escherichia coli to determine the intracellular levels of octaprenyl phosphate, undecaprenyl phosphate, octaprenyl diphosphate, and undecaprenyl diphosphate. This is the first report of separate measurement of cellular levels of polyprenyl phosphates and polyprenyl diphosphates.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3