HEATR1 promotes proliferation in gastric cancer in vitro and in vivo

Author:

Zhao Jun1,Zhu Yiping1,Fu Qingsheng1,Zhu Yimei1,Zhao Guohai1

Affiliation:

1. Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China

Abstract

Abstract HEAT repeat-containing protein 1 (HEATR1) is related to the progression of several cancers. However, the role of HEATR1 in gastric cancer (GC) remains unknown. In the present study, we aimed to detect the expression of HEATR1 in GC and identify its role. The expressions of HEATR1 in GC tissues were analyzed using The Cancer Genome Atlas database and by western blot analysis and immunohistochemistry. Furthermore, the HEATR1 expressions in GC cell lines MGC-803 and AGS were knocked down by using lentivirus-mediated HEATR1 shRNA. Cell proliferation and apoptosis were detected by CCK-8 and Caspase-Glo® 3/7 assays, respectively. PathScan® Signaling Antibody Array kit and Kyoto Encyclopedia of Genes and Genomes enrichment were used to study the pathways related to HEATR1. The influence of HEATR1 shRNA on the in vivo growth of GC cells was assessed by establishing a nude mouse xenograft model and conducting bioluminescence imaging. Our results showed that HEATR1 was highly expressed in GC tissues. Higher expression of HEATR1 is related to cancer progression and metastasis. Knocking down HEATR1 significantly suppressed the cell proliferation and colony formation and promoted cell apoptosis. The expression levels of phosphorylated p53, p38 MAPK, Chk2, and IKBa in shHEATR1-transfected MGC-803 cells exceeded those in shCtrl-transfected cells. HEATR1 shRNA treatment also significantly inhibited tumor growth in the mouse model. This study suggested that HEATR1 may be an oncogene and a target for GC therapy.

Funder

Key Research and Development Plan Project of Anhui Province

Natural Science Foundation of Anhui Province

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3