Affiliation:
1. School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
Abstract
Abstract
Plant lectins are carbohydrate-binding proteins with nonimmune origin, which can reversibly bind with carbohydrates, agglutinate cells, and precipitate polysaccharides and glycoconjugates. Plant lectins have attracted much attention for their anti-virus, anti-proliferation, and pro-apoptosis properties. Thus the exploration of new lectins has received special attention. Here we purified a mannose-binding lectin from the rhizomes of Liparis nervosa by ion exchange chromatography on DEAE-Sepharose, affinity chromatography on Mannose-Sepharose 4B, and gel filtration chromatography on Sephacryl S-100. The purified L. nervosa lectin (LNL) was identified to be a monomeric protein with a molecular mass of 13 kDa. LNL exhibited hemagglutinating activity towards rabbit erythrocytes, and its activity could be strongly inhibited by D-mannose, N-acetyl glucosamine and thyroglobulin. In vitro experiments showed that LNL exhibited a comparable anti-fungal activity against Piricularia oryzae (Cavara), Bipolaris maydis, Fusarium graminearum, and Sclerotium rolfsii, and anti-proliferation activity against tumor cells by inducing apoptosis. The full-length cDNA sequence of LNL is 715 bp in length and contains a 525 bp open reading frame (ORF) encoding a 110-residue mature protein. It was predicted to have three mannose-binding conserved motifs ‘QXDXNXVXY’. The binding pattern of LNL was further revealed by homology modeling and molecular docking. We demonstrated that LNL is not only a potential therapeutic candidate against tumor but also a new anti-fungal agent.
Funder
National Key Special Project for Breeding and Cultivation of GMO Varieties of Ministry of Agriculture
Publisher
China Science Publishing & Media Ltd.
Subject
General Medicine,Biochemistry,Biophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献