Affiliation:
1. Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology of Technology, Chongqing University of Technology, Chongqing 400054, China
Abstract
Abstract
Thioredoxin-interacting protein (Txnip) has emerged as a key regulator of insulin resistance. In this study, we investigated the roles of geniposide and Txnip in insulin resistance in differentiated 3T3-L1 adipocytes. Our results revealed that geniposide markedly enhanced glucose uptake, increased the protein levels of insulin receptor substrate (IRS)-1 and GLUT-1, and prevented the phosphorylation of IRS-1 and Akt Thr308 induced by insulin resistance in 3T3-L1 adipocytes. We also observed that geniposide accelerated protein degradation of Txnip through proteasome pathway, and knockdown of Txnip with small interfering RNA attenuated the effect of geniposide on insulin signaling molecules, implying that Txnip played a pivotal role in the regulation of insulin signaling molecules by geniposide in 3T3-L1 adipocytes. Furthermore, geniposide induced the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) in the presence of high glucose in differentiated 3T3-L1 adipocytes, while compound C, an inhibitor of AMPK, prevented the effect of geniposide on Txnip degradation and the regulation of glucose uptake and insulin signaling molecules including p-IRS-1, IRS-1, and GLUT-1 in differentiated 3T3-L1 adipocytes. Taken together, all these findings suggest that geniposide improves the insulin signaling defect possibly by AMPK-mediated Txnip degradation in 3T3-L1 adipocytes.
Funder
Chongqing Science and Technology Commission
Chongqing Municipal Education Commission
Publisher
China Science Publishing & Media Ltd.
Subject
General Medicine,Biochemistry,Biophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献