Affiliation:
1. Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
2. Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research), Harbin 150086, China
3. Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
Abstract
Abstract
Recent studies suggest that 7,8-dihydroxyflavone (7,8-DHF) inhibits the development of several tumors. However, its role in osteosarcoma (OS) remains unknown. This study was designed to investigate the effects and underlying mechanisms of 7,8-DHF that may influence OS development. Human OS cell lines (U2OS and 143B) were treated with 7,8-DHF; cell viability and cell migration were assessed by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and wound-healing assay, respectively; and cell death and apoptosis were evaluated by LIVE/DEAD staining and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay, respectively. Reactive oxygen species production was measured using 2,7-dichlorodihydrofluorescein diacetate probe. Akt, Bcl-xL/Bcl-2 asociated death promoter (Bad), p38 mitogen-activated protein kinase (MAPK), extracellular regulated protein kinase (ERK), and c-Jun N-terminal kinase (JNK) expression and their respective phosphorylation levels were detected by western blot analysis. We found that 7,8-DHF reduced cell viability in a dose-dependent manner and also promoted apoptosis, inhibited migration, and induced oxidative stress in OS cells. Moreover, 7,8-DHF inhibited Akt, Bad, and p38MAPK, but activated ERK and JNK signals. In summary, our results suggest that 7,8-DHF inhibits OS progression, possibly by regulating Akt/Bad and MAPK signaling. These findings provide new evidence for the pharmacological effects of 7,8-DHF that may improve drug therapy for OS patients.
Funder
Postdoctoral Fund of Heilongjiang Province
Publisher
China Science Publishing & Media Ltd.
Subject
General Medicine,Biochemistry,Biophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献