Dihydroartemisinin induces ER stress-dependent apoptosis of Echinococcus protoscoleces in vitro

Author:

Ma Rongji1,Qin Wenjuan2,Xie Yuanmao3,Han Ziwei1,Li Shuojie4,Jiang Yufeng15,Lv Hailong6

Affiliation:

1. Emergency Department of the First Affiliated Hospital of the Medical College of Shihezi University, Shihezi 832002, China

2. Department of Ultrasound Diagnosis, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China

3. Department of Gastroenterology of the First Affiliated Hospital of Medical College of Shihezi University, Shihezi 832000, China

4. Shihezi University School of Medicine, Clinical Pathology Department of the First Affiliated Hospital of the Medical College of Shihezi University, Shihezi 832000, China

5. School of Basic Medicine, Chengdu Medical College, Chengdu 610500, China

6. Hepatological Surgery Department, The Third People’s Hospital of Chengdu, Chengdu 610500, China

Abstract

Abstract In this study, we investigated the effect of dihydroartemisinin on Echinococcus protoscoleces and explored the role of endoplasmic reticulum stress in this process. Echinococcus protoscoleces were collected and cultured in RPMI 1640 medium. Changes in the expressions of glucose-regulated protein 78 (GRP-78), caspase-12, and C/EBP homologous protein (CHOP) were assessed through confocal immunofluorescence and western blot analysis. Cell viability and morphological changes were observed under a light microscope. The ultrastructure of protoscoleces was observed by scanning electron microscopy and transmission electron microscopy. Caspase-3 activity was detected using an enzyme assay kit. After dihydroartemisinin treatment, the protoscoleces showed loss of viability, and morphological changes including soma contraction, blebs formation, hooks loss, microtrichia destruction, and development of lipid droplets was observed. The levels of caspase-12 and CHOP were increased within 2 days of dihydroartemisinin treatment. However, the levels of GRP-78, caspase-12, and CHOP were decreased in 4 days. Furthermore, caspase-3 activity was increased after treatment with different concentrations of dihydroartemisinin. Dihydroartemisinin can induce apoptosis in protoscoleces via the ER stress-caspase-3 apoptotic pathway in vitro. These results indicate that dihydroartemisinin is a potentially valuable therapeutic agent against echinococcosis.

Funder

National Natural Science Foundation of China

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3