hsa_circ_0062019 promotes the proliferation, migration, and invasion of prostate cancer cells via the miR-195-5p/HMGA2 axis

Author:

Wang Peiyu123,Zhang Ligang123,Yin Shuiping123,Xu Yuchen123,Tai Sheng123,Zhang L i123,Liang Chaozhao123

Affiliation:

1. Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

2. Institute of Urology, Anhui Medical University, Hefei 230032, China

3. Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032, China

Abstract

Abstract Circular RNA (circRNA) is a new class of non-coding RNA. It was reported that circRNA involves in the metastasis of cancer. The aim of this study is to explore the role and mechanism of circRNA hsa_circ_0062019 in the development of prostate cancer (PCa). Our results showed that hsa_circ_0062019 was highly expressed in PCa cell lines. Cell Counting Kit-8 assay revealed that upregulation of hsa_circ_0062019 boosted PCa cell proliferation, and silencing of hsa_circ_0062019 inhibited cell proliferation. Meanwhile, transwell assay proved that upregulation of hsa_circ_0062019 facilitated PCa cell invasion and migration, while downregulation of hsa_circ_0062019 inhibited these malignant phenotypes. Furthermore, luciferase reporter assay proved the binding of hsa_circ_0062019 with miR-195-5p and the binding between miR-195-5p and high mobility group AT-hook 2 (HMGA2), suggesting that hsa_circ_0062019 promoted the expression of HMGA2 by sponging miR-195-5p. In addition, our results revealed that the hsa_circ_0062019-induced PCa cell malignant phenotypes were notably reversed by the downregulation of HMGA2. Overall, our study demonstrated that hsa_circ_0062019 promoted PCa cell proliferation, migration, and invasion via upregulation of HMGA2 expression by sponging miR-195-5p. Our study proved a novel molecular mechanism of PCa development and provided a potential target for the treatment of PCa.

Funder

Cultivation Project of Young Top-Notch Talent Support from Anhui Medical University (AHMU) and the Funding for Distinguished Young Scientists of the First Affiliated Hospital of AHMU

Natural Science Research Project Funding of Higher Education Institutions of Anhui Province

National Natural Science Foundation of China

Scientific Research Foundation of the Institute for Translational Medicine of Anhui Province

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3