miR-100-5p in human umbilical cord mesenchymal stem cell-derived exosomes mediates eosinophilic inflammation to alleviate atherosclerosis via the FZD5/Wnt/β-catenin pathway

Author:

Gao Heng1,Yu Zhanbiao2,Li Yuanyuan3,Wang Xue4ORCID

Affiliation:

1. Department of Emergency Internal Medicine, Shaanxi Provincial People’s Hospital, Xi’an 710068, China

2. Department of Cardiovascular Medicine, Qingyang People’s Hospital, Qingyang 745000, China

3. Department of Emergency Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068, China

4. Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China

Abstract

Abstract Exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-Ex) play important roles in immune and inflammation diseases. However, the role of hUCMSC-Ex in atherosclerosis has not been elucidated. In this study, the isolated exosomes were identified by transmission electron microscopy and nanoparticle tracking analysis. Exosome marker protein levels were increased in the hUCMSC-Ex compared with those in hUCMSC suspension, indicating that exosomes were successfully isolated from hUCMSCs. Furthermore, eosinophils were treated with oxidized low-density lipoprotein (ox-LDL) to construct inflammation model and then incubated with hUCMSC-Ex derived from hUCMSCs which were transfected with miR-100-5p mimic or miR-100-5p inhibitor. We found that hUCMSC-Ex increased miR-100-5p expression, inhibited cell migration, promoted cell apoptosis, and reduced inflammatory cytokine levels in ox-LDL-treated eosinophils, and miR-100-5p overexpression in hUCMSCs enhanced these effects, while miR-100-5p inhibition reversed these effects. Moreover, frizzled 5 (FZD5) was a target gene of miR-100-5p. FZD5 overexpression reversed the inhibitory effects of hUCMSC-Ex-miR-100-5p on cell progression and inflammation in eosinophils. Additionally, hUCMSC-Ex-miR-100-5p decreased the expression of cyclin D1 and β-catenin proteins. Wnt/β-catenin pathway activator BML-284 effectively reversed the effects of hUCMSC-Ex-miR-100-5p on cell progression and inflammation in eosinophils. ApoE−/− mice were fed with high-fat diet to construct an atherosclerosis mice model, and hUCMSC-Ex was injected into mice. hUCMSC-Ex reduced atherosclerotic plaque area and inflammation response in atherosclerosis mice. This study demonstrates that hUCMSC-Ex-miR-100-5p inhibits cell progression and inflammatory response in eosinophils via the FZD5/Wnt/β-catenin pathway, thereby alleviating atherosclerosis progression.

Funder

Department of Cardiovascular Surgery in the First Affiliated Hospital of Xi’an Jiaotong University

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3