Insulin-induced conformational changes in the full-length insulin receptor: structural insights gained from molecular modeling analyses

Author:

Yang Yong Xiao1,Li Peng1,Wang Pan2,Zhu Bao Ting12

Affiliation:

1. Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China

2. Shenzhen Bay Laboratory, Shenzhen 518055, China

Abstract

Abstract Insulin receptor plays an important role in the regulation of energy metabolism. Dysfunction of insulin receptor (IR) can lead to many disease states, such as diabetes mellitus. Deciphering the complex dynamic structures of human IR and its mechanism of activation would greatly aid in understanding IR-mediated signaling pathways and also in designing new drugs (including nonpeptidal insulin analogs) to treat diabetes mellitus. Experimental evidence about IR structures has been gradually obtained by biologists over the past three decades. Based on available experimental structures of IR in different states, here we employ molecular modeling approach to construct the full-length IR structures in different states and model its structural and conformational changes during insulin-induced IR activation. Several key possible intermediate states are constructed based on structural alignment, rotation, and computational modeling. Based on the structures of the full-length IR in different states, it appears that there are two possible conformational transition pathways: one is symmetric and the other one is asymmetric. Structural changes and motions of different domains of the full-length IR along the pathways are analyzed. The role of insulin binding to IR in facilitating the conformational transition of the receptor is analyzed. Information and insights derived from our present structural modeling analyses may aid in understanding the complex dynamic, structural, and conformational changes during the process of IR activation.

Funder

National Natural Science Foundation of China

Shenzhen Peacock Plan

Shenzhen Bay Laboratory

Shenzhen Key Laboratory of Steroid Drug Discovery and Development

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insulin receptor-inspired soluble insulin binder;European Journal of Cell Biology;2023-06

2. Research progress of coumarins and their derivatives in the treatment of diabetes;Journal of Enzyme Inhibition and Medicinal Chemistry;2022-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3