HOTAIRM1 promotes osteogenic differentiation and alleviates osteoclast differentiation by inactivating the NF-κB pathway

Author:

Ren Yi1,Zhang Kun1ORCID,Wang Jingzhao1,Meng Xiaoxiang1,Du Xiaoxiao1,Shi Zhemin1,Xue Yuan2,Hong Wei13

Affiliation:

1. Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China

2. Department of Orthopedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China

3. Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Tianjin Medical University, Tianjin 300070, China

Abstract

Abstract Osteoporosis (OP), one of the most prevalent chronic progressive bone diseases, is caused by deficiency in bone formation by osteoblasts or excessive bone resorption by osteoclasts and subsequently increases the risk of bone fractures. Emerging evidence has indicated that long noncoding RNAs (lncRNAs) play key roles in many biological processes and various disorders. However, the role and mechanism of HOX antisense intergenic RNA myeloid 1 (HOTAIRM1), a myeloid-specific lncRNA, in osteoclast differentiation, osteogenic differentiation, and OP remain unclear. In this study, we found that HOTAIRM1 was upregulated during ossification of ligamentum flavum and osteogenic differentiation, while it was downregulated in osteoclast differentiation and in the bone and serum of human and mouse with OP. Further investigation revealed that silencing Hotairm1 decreased the expression of the osteogenic markers and attenuated osteogenesis. Moreover, forced Hotairm1 expression inhibited the expressions of the osteoclastogenesis markers and alleviated receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation. Mechanically, Hotairm1 repressed the phosphorylation of p65 and inhibitor of κBα (IκBα) and attenuated RANKL-mediated enhancement of phos-p65 and IκBα, suggesting that Hotairm1 inhibits RANKL-induced osteoclastogenesis through the NF-κB pathway. In conclusion, our data identified a crucial role of HOTAIRM1 in OP, providing a proof of this molecule as a potential diagnostic marker and a possible therapeutic target against OP.

Funder

Natural Science Foundation of Tianjin City

National Natural Science Foundation of China

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3