Tamoxifen attenuates reactive astrocyte-induced brain metastasis and drug resistance through the IL-6/STAT3 signaling pathway

Author:

Xu Yongming1,Zhu Yanrong2,Yue Yong3,Pu Shaofeng1,Wu Junzhen1,Lv Yingying1,Du Dongping1

Affiliation:

1. Department of Pain Management, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China

2. Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng 252000, China

3. Department of Anesthesiology, Zhejiang Putuo Hospital, Zhoushan 316100, China

Abstract

Abstract Brain metastasis affects approximately 20%–30% of patients with triple-negative breast cancers (TNBCs). Even small metastatic lesions in the brain can trigger severe neurological impairments and result in extremely short survival time. Recently, active astrocytes were reported to be associated with brain metastases. However, how activated astrocytes regulate the behaviors of disseminated breast cancer cells in the brain remains unknown. In this study, human primary astrocytes were stimulated with IL-1β to form active astrocytes to study the cross-talk between stromal cells (astrocytes) and TNBC cells in brain metastases. Our results showed that active astrocytes significantly increase the malignancy of TNBC cells and prevent them from undergoing apoptosis caused by doxorubicin. We also found that the high level of IL-6 secreted by activated astrocytes was responsible for the drug resistance of breast cancer, which could be abolished by treatment of astrocytes with tamoxifen (TAM). The blockage of active astrocyte-derived IL-6 by a neutralizing antibody resulted in the attenuation of drug resistance, consequently enhancing the sensitivity of breast cancer cells to doxorubicin. Furthermore, the possible involved TAM-modulated drug resistance mechanism may be associated with a decrease in IL-6 expression in astrocytes and the downregulation of MAPK and JAK2/STAT3 signaling in cancer cells. Our data suggested that TAMs might reduce drug resistance through the IL-6/JAK2/STAT3 signaling pathway, providing a possible therapy to treat brain metastasis in TNBCs, as estrogen receptor inhibitors (TAMs, etc.) can cross the blood–brain barrier.

Funder

Shanghai Municipal Health Commission

the National Natural Science Foundation of China

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3