Propofol differentially induces unconsciousness and respiratory depression through distinct interactions between GABAA receptor and GABAergic neuron in corresponding nuclei

Author:

Jiang Junli12,Jiao Yingfu1,Gao Po1,Yin Wen1,Zhou Wei1,Zhang Yunchun1,Liu Yanjun3,Wen Daxiang1,Wang Yuan2,Zhou Liang2,Yu Tian24,Yu Weifeng1

Affiliation:

1. Department of Anesthesiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China

2. Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou 563000, China

3. Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China

4. Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Guizhou 563000, China

Abstract

Abstract Propofol is the most commonly used intravenous anesthetic worldwide. It can induce loss of consciousness prior to the occurrence of severe respiratory suppression, which is also a pharmacodynamic feature of all general anesthetics. However, the neural mechanisms underlying this natural phenomenon are controversial and highly related to patient safety. In the present study, we demonstrated that the pharmacodynamic effects of propofol (50 and 100 μM) on suppression of consciousness-related excitatory postsynaptic currents in the medial prefrontal cortex (mPFC) and centromedian nucleus of the thalamus (CMT) were lower than those in the kernel respiratory rhythmogenesis nucleus pre-Bötzinger complex (PrBo). Furthermore, we unexpectedly found that the GABAA receptor β3 subunit is the key target for propofol’s action and that it is mutually and exclusively expressed in GABAergic neurons. It is also more abundant in the mPFC and CMT, but mainly co-localized with GABAergic neurons in the PrBo. As a result, the differentiated expression pattern should mediate more neuron suppression through the activation of GABAergic neurons in the mPFC and CMT at low doses of propofol (50 μM). However, PrBo GABAergic neurons were only activated by propofol at a high dose (100 μM). These results highlight the detailed pharmacodynamic effects of propofol on consciousness-related and respiration-related nuclei and provide the distinct interaction mechanism between the β3 subunit and GABAergic neurons in mediating the suppression of consciousness compared to the inhibition of respiration.

Funder

National Natural Science Foundation of China

Innovation Program of Shanghai Municipal Education Commission

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3