Femur Bone Volumetric Estimation for Osteoporosis Classification Using Optimization-Based Deep Belief Network in X-Ray Images

Author:

Shankar N1,Sathish Babu S2,Viswanathan C3

Affiliation:

1. Department of Biomedical Engineering, Saveetha Engineering College, Thandalam 602105, Chennai, Tamilnadu, India

2. Department of Electronics and Instrumentation Engineering, Annamalai University, Annamalai Nagar, Chidambaram 608002, Tamil Nadu, India

3. Department of Electronics and Communication Engineering, GRT Institute of Engineering and Technology, Tiruttani, Tamilnadu 631209, India

Abstract

AbstractOsteoporosis classification is a significant requirement in the medical field to automatically classify the patients with skeleton disorder that occurs as a result of aging. The classification algorithms required improved accuracy and computationally less complexity. Accordingly, this paper proposes a classification method using the proposed gradient harmony search (GHS) optimization-based deep belief network. The GHS is developed by integrating the harmony search (HS) in the gradient descent (GD) algorithm. The osteoporosis classification is progressed as five major steps: preprocessing, segmentation using active shape model, geometric estimation using the proposed template search method, feature extraction for extracting the medical and image level features, and osteoporosis classification using the proposed GHS based deep belief network. The proposed template search method updates the geometric points of the femur segment effectively and automatically. Experimentation using the real-time database ensures the effectiveness of the proposed method in terms of accuracy, sensitivity, and specificity. The proposed method acquired the accuracy of 0.9539, proving that the osteoporosis classification using the proposed algorithm seems to be effective in taking accurate decisions regarding the patients.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3