Super Structure Fault-Tolerance Assessment of the Generalized Hypercube

Author:

Shu Chang1,Wang Yan1,Fan Jianxi1,Wang Guijuan23

Affiliation:

1. School of Computer Science and Technology, Soochow University , Suzhou 215006 , China

2. Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China

3. Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science , Jinan 250353 , China

Abstract

Abstract Fault-tolerant performance of a network is the prerequisite and guarantee for the normal operation of a network, which is often characterized by connectivity. Let $H$ denote a connected subgraph of $G$ and $H^{*}$ denote the union of the set of all connected subgraphs of $H$ and the set of the trivial graph. Super $H$-connectivity (resp. super $H^{*}$-connectivity) satisfies the conditions of both super connectivity and $H$-structure connectivity (resp. $H$-substructure connectivity). These two kinds of new connectivity provide a new metric to measure the fault-tolerance of the network, that is, the super structure fault-tolerance. The generalized hypercube $G(m_{r}, m_{r-1},..., m_{1})$ is a universal topology of interconnection networks that contains other commonly used topologies and it has been applied in many data center networks because of its excellent qualities. In this paper, we research the super structure fault-tolerance of $G(m_{r}, m_{r-1},..., m_{1})$ by studying super $H$-connectivity $\kappa ^{\prime}(G|H)$ and super $H^{*}$-connectivity $\kappa ^{\prime}(G|H^{*})$ for $H\in \{K_{1,M},\ C_{3},\ C_{4},\ K_{4}\}$.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

NSF of Shandong Province

Piloting Fundamental Research Program for the Integration of Scientific Research

Education and Industry of Qilu University of Technology

Colleges and Universities 20 Terms

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3