Distributed Partial Simulation for Graph Pattern Matching

Author:

Aouar Aissam1,Yahiaoui Saïd2,Sadeg Lamia1,Nouali-Taboudjemat Nadia2,Beghdad Bey Kadda1

Affiliation:

1. Ecole Millitaire Polytechnique , BP 17, Bordj el Bahri, Algiers 16111, Algeria

2. CERIST Research Center on Scientific and Technical Information , Ben Aknoun, Algiers 16030, Algeria

Abstract

Abstract Pattern matching in big graphs is important for different modern applications. Recently, this problem was defined in terms of multiple extensions of graph simulation, to reduce complexity and capture more meaningful results. These results were achieved through the relaxation of commonly used constraint in subgraph isomorphism pattern matching. Nevertheless, these graph simulation variant models are still too strict to provide results in many cases, especially when analyzed graphs contain anomalies and incomplete information. To deal with this issue, we introduce a new graph pattern matching (GPM) method, called partial simulation, capable of retrieving matches despite missing parts of the pattern graph, such as vertices and/or edges. Furthermore, considering the number and inequality of the outputs, we define a relevance function to compute a value expressing how each match vertex respects the pattern graph. Similarly, we define partial dual simulation GPM that returns vertices that satisfy a part of the dual simulation constraints and assigns a relevance value to them. Additionally, we provide distributed scalable algorithms to evaluate the proposed partial simulation methods based on the distributed vertex-centric programming paradigm. Finally, our experiments on real-world data graphs demonstrate the effectiveness of the proposed models and the efficiency of their associated algorithms.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3