Weakly Supervised Sentiment-Specific Region Discovery for VSA

Author:

Xue Luoyang1,Xu Ang1,Mao Qirong1,Gao Lijian1,Chen Jie1

Affiliation:

1. Computer Science and Communication Engineering, Zhenjaing, Jiangsu Province, 212013, China

Abstract

AbstractLocal information has significant contributions to visual sentiment analysis (VSA). Recent studies about local region discovery need manually annotate region location. Affective local information learning and automatic discovery of sentiment-specific region are still the challenges in VSA. In this paper, we propose an end-to-end VSA method for weakly supervised sentiment-specific region discovery. Our method contains two branches: an automatic sentiment-specific region discovery branch and a sentiment analysis branch. In the sentiment-specific region discovery branch, a region proposal network with multiple convolution kernels is proposed to generate candidate affective regions. Then, we design the multiple instance learning (MIL) loss to remove redundant and noisy candidate regions. Finally, the sentiment analysis branch integrates both holistic and localized information obtained in the first branch by feature map coupling for final sentiment classification. Our method automatically discovers sentiment-specific regions by the constraint of MIL loss function without object-level labels. Quantitative and qualitative evaluations on four benchmark affective datasets demonstrate that our proposed method outperforms the state-of-the-art methods.

Funder

National Nature Science Foundation of China

Key Projects of the National Natural Science Foundation of China

Innovation Project of Undergraduate Students in Jiangsu University

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference62 articles.

1. Large-Scale Visual Sentiment Ontology and Detectors Using Adjective Noun Pairs;Borth,2013

2. From pixels to sentiment: fine-tuning cnns for visual sentiment prediction;Campos;Image Vis. Comput.,2017

3. Diving Deep Into Sentiment: Understanding Fine-Tuned cnns for Visual Sentiment Prediction;Campos,2015

4. LIBSVM: a library for support vector machines;Chang;ACM TIST,2011

5. Deepsentibank: visual sentiment concept classification with deep convolutional neural networks;Chen,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thematic editorial: sentiment analysis;The Computer Journal;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3