Detection of 2D and 3D Video Transitions Based on EEG Power

Author:

Manshouri Negin1,Melek Mesut2,Kayıkcıoglu Temel1

Affiliation:

1. Department of Electrical and Electronics Engineering, Faculty of Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey

2. Department of Electrical and Electronics Engineering, Faculty of Engineering, Gumushane University, Gumushane 29100, Turkey

Abstract

Abstract Despite the long and extensive history of 3D technology, it has recently attracted the attention of researchers. This technology has become the center of interest of young people because of the real feelings and sensations it creates. People see their environment as 3D because of their eye structure. In this study, it is hypothesized that people lose their perception of depth during sleepy moments and that there is a sudden transition from 3D vision to 2D vision. Regarding these transitions, the EEG signal analysis method was used for deep and comprehensive analysis of 2D and 3D brain signals. In this study, a single-stream anaglyph video of random 2D and 3D segments was prepared. After watching this single video, the obtained EEG recordings were considered for two different analyses: the part involving the critical transition (transition state) and the state analysis of only the 2D versus 3D or 3D versus 2D parts (steady state). The main objective of this study is to see the behavioral changes of brain signals in 2D and 3D transitions. To clarify the impacts of the human brain’s power spectral density (PSD) in 2D-to-3D (2D_3D) and 3D-to-2D (3D_2D) transitions of anaglyph video, nine visual healthy individuals were prepared for testing in this pioneering study. Spectrogram graphs based on short time Fourier transform (STFT) were considered to evaluate the power spectrum analysis in each EEG channel of transition or steady state. Thus, in 2D and 3D transition scenarios, important channels representing EEG frequency bands and brain lobes will be identified. To classify the 2D and 3D transitions, the dominant bands and time intervals representing the maximum difference of PSD were selected. Afterward, effective features were selected by applying statistical methods such as standard deviation, maximum (max) and Hjorth parameters to epochs indicating transition intervals. Ultimately, k-nearest neighbors, support vector machine and linear discriminant analysis (LDA) algorithms were applied to classify 2D_3D and 3D_2D transitions. The frontal, temporal and partially parietal lobes show 2D_3D and 3D_2D transitions with a good classification success rate. Overall, it was found that Hjorth parameters and LDA algorithms have 71.11% and 77.78% classification success rates for transition and steady state, respectively.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference62 articles.

1. Human brain function,2004

2. Fundamentals of EEG measurement;Teplan;Measure. Sci. Rev.,2002

3. Eye Anatomy

4. Physiology of vision and the visual system;Forrester;Eye,2016

5. A comprehensive analysis of 2D&3D video watching of EEG signals by increasing PLSR and SVM classification results;Manshouri;Comput. J.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of EEG and EOG signals in classification of sleep stages;Pamukkale University Journal of Engineering Sciences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3