Optimal Text Document Clustering Enabled by Weighed Similarity Oriented Jaya With Grey Wolf Optimization Algorithm

Author:

Venkanna Gugulothu1,Bharati Dr K F2

Affiliation:

1. Department of Computer Science & Engineering, Jawaharlal Nehru Technological University, Anantapuramu, Anantapur 515002, India

2. Jawaharlal Nehru Technological University, Anantapuramu, Anantapur 515002, India

Abstract

Abstract Owing to scientific development, a variety of challenges present in the field of information retrieval. These challenges are because of the increased usage of large volumes of data. These huge amounts of data are presented from large-scale distributed networks. Centralization of these data to carry out analysis is tricky. There exists a requirement for novel text document clustering algorithms, which overcomes challenges in clustering. The two most important challenges in clustering are clustering accuracy and quality. For this reason, this paper intends to present an ideal clustering model for text document using term frequency–inverse document frequency, which is considered as feature sets. Here, the initial centroid selection is much concentrated which can automatically cluster the text using weighted similarity measure in the proposed clustering process. In fact, the weighted similarity function involves the inter-cluster, and intra-cluster similarity of both ordered and unordered documents, which is used to minimize weighted similarity among the documents. An advanced model for clustering is proposed by the hybrid optimization algorithm, which is the combination of the Jaya Algorithm (JA) and Grey Wolf Algorithm (GWO), and so the proposed algorithm is termed as JA-based GWO. Finally, the performance of the proposed model is verified through a comparative analysis with the state-of-the-art models. The performance analysis exhibits that the proposed model is 96.56% better than genetic algorithm, 99.46% better than particle swarm optimization, 97.09% superior to Dragonfly algorithm, and 96.21% better than JA for the similarity index. Therefore, the proposed model has confirmed its efficiency through valuable analysis.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3