Affiliation:
1. Department of Computer Science & Engineering, Jawaharlal Nehru Technological University, Anantapuramu, Anantapur 515002, India
2. Jawaharlal Nehru Technological University, Anantapuramu, Anantapur 515002, India
Abstract
Abstract
Owing to scientific development, a variety of challenges present in the field of information retrieval. These challenges are because of the increased usage of large volumes of data. These huge amounts of data are presented from large-scale distributed networks. Centralization of these data to carry out analysis is tricky. There exists a requirement for novel text document clustering algorithms, which overcomes challenges in clustering. The two most important challenges in clustering are clustering accuracy and quality. For this reason, this paper intends to present an ideal clustering model for text document using term frequency–inverse document frequency, which is considered as feature sets. Here, the initial centroid selection is much concentrated which can automatically cluster the text using weighted similarity measure in the proposed clustering process. In fact, the weighted similarity function involves the inter-cluster, and intra-cluster similarity of both ordered and unordered documents, which is used to minimize weighted similarity among the documents. An advanced model for clustering is proposed by the hybrid optimization algorithm, which is the combination of the Jaya Algorithm (JA) and Grey Wolf Algorithm (GWO), and so the proposed algorithm is termed as JA-based GWO. Finally, the performance of the proposed model is verified through a comparative analysis with the state-of-the-art models. The performance analysis exhibits that the proposed model is 96.56% better than genetic algorithm, 99.46% better than particle swarm optimization, 97.09% superior to Dragonfly algorithm, and 96.21% better than JA for the similarity index. Therefore, the proposed model has confirmed its efficiency through valuable analysis.
Publisher
Oxford University Press (OUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献