Failing to Hash Into Supersingular Isogeny Graphs

Author:

Booher Jeremy1,Bowden Ross2,Doliskani Javad3,Boris Fouotsa Tako4,Galbraith Steven D5,Kunzweiler Sabrina6,Merz Simon-Philipp7,Petit Christophe89,Smith Benjamin10,Stange Katherine E11,Ti Yan Bo12,Vincent Christelle13,Voloch José Felipe14,Weitkämper Charlotte9,Zobernig Lukas5

Affiliation:

1. Department of Mathematics, University of Florida , Gainsville, FL 32611 , USA

2. School of Computer Science, University of Bristol , Bristol, BS8 1UB , UK

3. Department of Computing and Software, McMaster University , Hamilton, L8S 4L7 , Canada

4. LASEC , EPFL, 1015 Lausanne , Switzerland

5. Department of Mathematics, The University of Auckland , Auckland, 1010 , New Zealand

6. Ruhr-Universität Bochum , 44801 Bochum , Germany

7. Department of Computer Science , ETH Zurich, 8092 Zürich , Switzerland

8. Laboratoire d’Informatique, Université libre de Bruxelles , 1050 Bruxelles , Belgium

9. University of Birmingham , Birmingham, B15 2TT , UK

10. Inria and Laboratoire d’Informatique (LIX) , CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

11. Department of Mathematics, University of Colorado Boulder , Boulder, CO 80309 , USA

12. DSO National Laboratories , 118225 , Singapore

13. Department of Mathematics and Statistics, University of Vermont , Burlington, VT 05405 , USA

14. School of Mathematics and Statistics, University of Canterbury , Christchurch, 8140 , New Zealand

Abstract

Abstract An important open problem in supersingular isogeny-based cryptography is to produce, without a trusted authority, concrete examples of ‘hard supersingular curves’ that is equations for supersingular curves for which computing the endomorphism ring is as difficult as it is for random supersingular curves. A related open problem is to produce a hash function to the vertices of the supersingular $\ell $-isogeny graph, which does not reveal the endomorphism ring, or a path to a curve of known endomorphism ring. Such a hash function would open up interesting cryptographic applications. In this paper, we document a number of (thus far) failed attempts to solve this problem, in the hope that we may spur further research, and shed light on the challenges and obstacles to this endeavour. The mathematical approaches contained in this article include: (i) iterative root-finding for the supersingular polynomial; (ii) gcd’s of specialized modular polynomials; (iii) using division polynomials to create small systems of equations; (iv) taking random walks in the isogeny graph of abelian surfaces, and applying Kummer surfaces and (v) using quantum random walks.

Funder

Marsden Fund Council

Royal Society of New Zealand

Natural Sciences and Engineering Research Council of Canada

Deutsche Forschungsgemeinschaft

DFG

German Research Foundation

Germany’s Excellence Strategy

Engineering & Physical Sciences Research Council

CIAO

Plan France 2030

National Science Foundation

NSF-CAREER

Simons Foundation

Ministry of Business, Innovation and Employment

Publisher

Oxford University Press (OUP)

Reference69 articles.

1. Constructing supersingular elliptic curves;Bröker;J. Comb. Number Theory,2009

2. Cryptographic hash functions from expander graphs;Charles;J. Cryptology,2009

3. CSIDH: An efficient post-quantum commutative group action;Castryck,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3